
Crystal Oscillators LVPECL/LVDS 3.3V

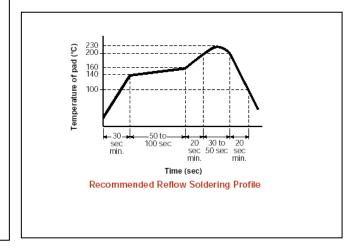
5X7 mm Surface Mount High Reliability 750 KHz to 800 MHz

These high reliability oscillators provide PECL/LVDS waveforms for applications subjected to the most stringent environmental conditions. They are mechanically robust and weigh less than 0.2 grams. This 5X7 mm SMD package has a hermetic seal, thus ensuring the integrity of each oscillator. Each oscillator is burned-in at 125°C for 168 hours, temperature cycled and centrifuged then fully tested in accordance with Table 1. Reliability tests are performed per Table 2.

Features

- High speed Low jitter LVPECL or LVDS output with tristate
- Small SMD package (5X7 mm)
- Stability options from +/-25ppm to +/-100ppm
- Leadless chip carrier package is hermetically sealed for superior aging and field performance
- Crystal angle controlled to +/-0.5 for excellent temperature stability
- 168 hour Class B burn-in and extensive environmental testing for best performance in rugged field environments
- Tristate option available
- Serialized test data available
- Calculated MTBF is 3.8X10⁶ hours at 125°C

Marking is shown on top 0.205, (5.2) SUGGESTED PC PADS (with 0.1µF bypass capacitor shown) Millimeters are shown in (). 102, (2.6) Outline Drawing


Applications

Telecom/networking systems that require low jitter clocks

- DSL
- Gigabit Ethernet
- Fibre channel
- Optical networking
- Extended temperature applications

Connections

Pin#	Connection		
1	Tristate		
2	N/C		
3	Case, GND		
4	Output		
5	Output		
6	Supply Voltage		

Crystal Oscillators LVPECL/LVDS 3.3V

5X7 mm Surface Mount High Reliability 750 KHz to 800 MHz

ELECTRICAL SPECIFICATIONS

Frequency Range 750 KHz to 800 MHz

Frequency Stability

Includes calibration at 25°C, operating temperature, change of input voltage, change of load, shock and vibration

100, 50, 25 or 20 ppm

	MIN	TYP	MAX	UNITS
Input Voltage, V _{DD}	3.15	3.3	3.45	volts
Jitter				
Period jitter RMS				
19.44MHz		5		ps
77.76MHz		8		ps
155.52MHz		9		ps
622.08MHz		10		ps
Integrated jitter RMS				Ŷ
12 KHz to 20 MHz @ 155.52M	Hz	3	5	ps
Symmetry at (V _{DD} -1.3) V _{DC} (PEC	L)			percent
At $(1.25 \text{ V}_{DC}) \text{ (LVDS)}$,		45/55	percent
Aging				
First year		3		ppm
After first year		1		ppm/yr

Tristate

Input Requirements for Pin 1:

"1": On-Pin 1 may float or 2.8V min "0": Tristate-Pin 1 requires 0.4V max

Typical Phase Noise (dBc/Hz)	10Hz	100Hz	1KHz	10KHz	100KHz
Oscillator Frequency					
19.44MHz	-60	-90	-112	-140	-140
106.25MHz	-60	-90	-112	-127	-125
155.52MHz	-60	-90	-112	-125	-123
622.08MHz	-60	-90	-109	-110	-109

TABLE 1

Each unit undergoes the following:

1. Stabilization Bake MIL-STD-883 Method 1008, Cond, B
2. Temperature Cycling MIL-STD-883 Method 1010, Cond, B
3. Constant Acceleration MIL-STD-883 Method 2001, Cond, A
4. Burn-in MIL-STD-883 Method 1015, Cond B
(125°C for 168 hours with bias)
5. Fine Leak MIL-STD-883 Method 1014, Cond. A1
6. Gross Leak MIL-STD-883 Method 1014, Cond C
7. Electrical Test at 25°C and temperature extremes, as follows:

A. Frequency
B. Current
G. Frequency at 3.6V
C. Rise Time
D. Fall Time
E. Duty Cycle
H. Frequency at 3.0V
J. "Zero" logic level
J. "One" logic level
K. Tristate

Test Data on each unit is available for additional cost

ENVIRONMENTAL SPECIFICATIONS

Shock-MIL-STD 883, Method 2002, Test Condition B (1500 peak g,

0.5 ms duration, ½ sine wave, 5 shocks in 6 planes)

Vibration-MIL-STD 883, Method 2007, Test Condition A (20-2000Hz of .06:d.a. or 20 Gs, whichever is less)

Humidity- Resistant to 85° R.H. at 85° C

MECHANICAL SPECIFICATION

Leak-MIL STD 883, method 1014, condition A1 and C1

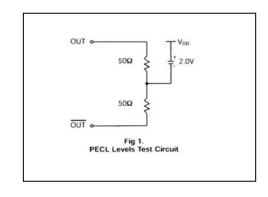
Case-Hermetically sealed ceramic LCC Pads-60 microinch of gold over nickel Marking-Epoxy ink or laser engraved

Resistance to Solvents-MIL STD 202, Method 215

MARKING SPECIFICATION

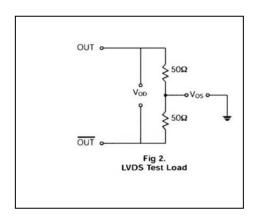
The format for the marking is:

VFH230CXX XX- Model code 200.000 frequency in MHz . YWW Manf. Code YWW for year and weeks

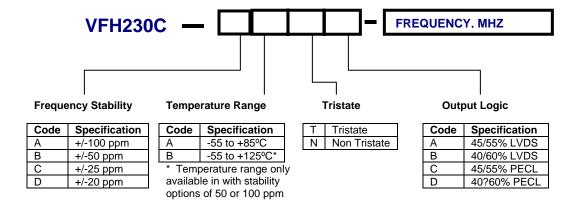


Crystal Oscillators LVPECL/LVDS 3.3V

5X7 mm Surface Mount High Reliability 750 KHz to 800 MHz


PECL Output Models Electrical Specifications

	MIN	TYP	MAX	UNITS
RL = 50Ω to $(V_{DD}-2V)$				
(see figure)				
Output High Voltage, V _{OH}		VDD-1.025		V
Output Low Voltage, V _{OL}			VDD-1.620	V
Input Current, PECL				
0.75 – 24 MHz			25	mA
24 – 160 MHz			65	mA
160 – 800 MHz			100	mA
Switching Characteristics				
Clock Rise Time, tr				
@20/80%		0.3	0.35	ns
Clock Fall Time, tf				
@80/20%				
		0.3	0.35	ns



LVDS Output Models Electrical Specifications

	MIN	TYP	MAX	UNITS
$RL = 100 \Omega$				
(see figure)				
Output Differential Voltage, VoD	247	355	454	mV
Output High Voltage, V _{OH}		1.4	1.6	V
Output Low Voltage, Vol	0.9	1.1		V
Offset Voltage, Vos	1.125	1.2	1.375	V
Input Current, LVDS			2.5	
0.75 – 24 MHz			25	mA
24 – 96 MHz			45	mA
96 – 800 MHz			80	mA
Switching Characteristics				
Differential Clock Rise Time, tr		0.3	0.4	ns
Differential Clock Fall Time, tf		0.3	0.4	ns

Create a Part Number

Crystal Oscillators LVPECL/LVDS 3.3V

5X7 mm Surface Mount High Reliability 750 KHz to 800 MHz

End Point

TABLE 2

Reliability Test Procedures and Conditions for Quartz Crystal Oscillators

<u>Standard</u>

MIL-STD-883

1. Group A

Electrical Characteristics at -55°, (0° for '5515), 25° and 125° (70° for M5515 and 85° for M5622)

Frequency @ 4.5, 5.0 and 5.5 volts (for 5 volts units) Symmetry (Duty Cycle)
Input current
Zero/One levels
Rise/Fall times
Physical Dimensions
Length/width
Height
Package finish (Corrosion, discoloration, etc.)
Marking placement/legibility

2. Group B- Life Test

1000 hrs at 125°C with bias and load

3. Group C- All units have passed Group A testing

A. Subgroup 1-8 pcs.

Standard MIL-STD-883	Condition Method 2002 COND.B	<u>Description</u> Mechanical Shock 1500 g's, 5ms 5 drops, 6 axis	Measurement Frequency Output wavefor
MIL-STD-883	Method 2007 COND. A.	Vibration, var. freq. 20 g's, .06" disp., 20- 20, 000-20 Hz	Frequency Output wavefore
MIL-STD-883	Method 2003	Solderability	Visual 95% Coverage

B. Subgroup 2-4 pcs (One-half of Subgroup 1

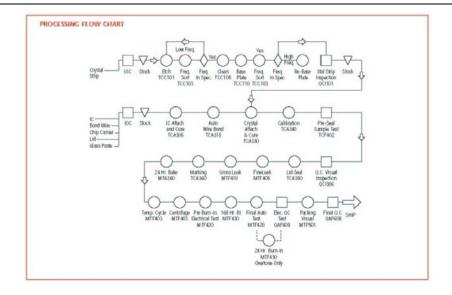
Description

Thermal Shock

Condition

Method 1011

End point


Frequency

Measurement

	COND. B	Liq. To liq. 15cycles	Output waveform
MIL-STD-202	Method 105 COND. B	Altitude, 3.44 inch Hg. 12 hrs	Frequency Output waveform
MIL-STD-883	Method 1004	Moisture resist. with 5V applied 25-65°C, 90 to 100% RH, 10 cycles	Frequency Output waveform
MIL-STD-202	Method 210 COND.A	Resistance to Solder Heat Immersion @350°C 3.5 sec	Frequency Output waveform

C. Subgroups 3-4 pcs. (One half of Subgroup 1)

<u>t</u>	C. Subgroups 3-4 pcs. (One half of Subgroup 1)				
form	<u>Standard</u>	Condition Storage Temp. No. Oper	Description 24 hrs. @ -55°C 24 hrs. @ 125°C	End point Measurement Frequency Output waveform	
form	MIL-STD-883	Method 1009 COND. A	Salt Atmosphere 24 hrs. @ 35°C .5-3.0% Solution	Frequency Output waveform Visual	
	MIL-STD-883	Method 1014 COND. B	Fine Leak	Qs <5 X10 ⁻⁸	
	MIL-STD-883	Method 1014 COND. C	Gross Leak	Visual in 125°C Detector fluid	

